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A set of hydrodynamic equations has been applied to processes occurring in non- 
conductive fluids placed into magnetic fields. The equations are valid for equilibrium 
magnetization within the framework of a continuous medium. The ranges of physical 
parameters have been evaluated for which magnetization of a fluid should be taken 
into account in problems concerning the determination of equilibrium forms, and 
flows and their stability. The conclusion has been drawn that magnetization of 
natural fluids in these problems must be taken into consideration for fluids in high 
(exceeding 1 T) magnetic fields. As examples, the solutions of several typical 
problems concerning the equilibrium surface of capillary fluids and their stability in 
external magnetic fields have been considered. Hydrodynamic effects related to 
magnetization of natural capillary fluids in high magnetic fields are studied with due 
regard for the above solutions. Hydrodynamic effects in para- and diamagnetic fluids 
have been studied and the common and distinctive features of these effects 
discussed. 

1. Introduction 
Strong magnetic fields are known to exist in both nature and technology. The 

latter uses hydrodynamic processes occurring in constant magnetic fields as strong 
as 20 T. The trend is to create even stronger fields : pulsed fields can be as strong as 
lo3 T. In astrophysics, fields even substantially stronger than lo3 T are considered 
(Knoepfel 1970). When applied to a fluid, a magnetic field also causes, in addition to 
hydrodynamic forces (pressure, viscosity, and surface tension), those of a magnetic 
origin, the so-called ponderomotive forces, and forces due to magnetization. 
Magnetohydrodynamics is the study of the effects caused by pondermotive forces. 
Since there is a trend to  use stronger magnetic fields, the study of hydrodynamic 
phenomena associated with the magnetization of natural fluids in strong magnetic 
fields (of the order of several T and higher) becomes more and more important. 

I n  hydrodynamics, magnetization gives rise to four effects, namely, the appearance 
of body force ,uoMVH acting on an element of a fluid; a jump in surface pressure 
+po{(Mn)2) ; the magnetocaloric effect ; and the dependence of physical coefficients 
(viscosity, thermal conductivity, and heat capacity) on magnetization. These factors 
are very important in the mechanics of fluids - in some ranges of physical parameters 
these effects start playing a noticeable role. 

A body force ,uo MVH and a jump in pressure on the surface &u,{(Mn)2} change the 
equilibrium shape and flow of fluids : a solitary droplet and the cross-section of a fluid 
jet elongate in the direction of the lines of force of the magnetic field; a plane surface 
of the fluid exhibits instability in a transverse magnetic field, etc. 

The effect of fluid magnetization on the equilibrium shape of non-electroconductive 
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capillary fluids in external magnetic fields and on the stability conditions of such 
shapes are studied in the present work, with special attention being paid to the 
effect of balance of magnetization and capillary forces. 

The above typical effects on the mechanics of fluids in strong magnetic fields may 
be studied using the usual viscous stress tensor for a Newtonian fluid, whose intrinsic 
magnetic moment M is always parallel to the strength vector H of the magnetic 
field. 

2. Set of basic equations 
A wide class of known motions of fluids is described, within the above model of an 

incompressible fluid with equilibrium magnetization, by the following set of 
equations (Batchelor 1967 ; Neuringer & Rosensweig 1964 ; Berkovsky, Bashtovoi & 
Vislovich 1985) : 

(1) I dv 
dt 

p- = qV2V-Vp+pg+poMVH; 

d ivv=O;  ro tW=O;  d i v B = O .  

On the free boundaries of a fluid 

k4 = a(Kl +K2)+$o{(Mn)2);  
on all the boundaries 

{ N ) x n  = 0, {B}n = 0 ,  

where { A )  = A - A ,  is the surface jump of A in the fluid and the surrounding gas 
(A,) ; p ,  v , M ,  and p are pressure, velocity, magnetization, and the density of the fluid, 
respectively, B is the magnetic induction, H is the magnetic field strength, ,uo is the 
magnetic permeability of a vacuum (magnetic constant), v is the coefficient of 
surface tension of a fluid, and K ,  and K ,  are the curvatures of normal sections of the 
surface. 

Transforming the set of equations (1)-(3) to dimensionless form by using 
characteristic length L, velocity v = U,, magnetic field strength H,, magnetic field 
induction B = B, = ,u,,uH,, time t = L/U,,  and pressure p = pgL, we arrive at 

dv V2v V p  Bo Bo, 
dt Re Fr2 We We 

i- - y i- ---MVH, _ -  

divv=O, r o t H = O ,  d i v B = O .  

The conditions a t  the free boundaries are 

Bob)  = (K,  +K,) -!jWe,{(Mn)2), 

and those a t  all the boundaries are 

{W] x n = 0, { B } n  = 0. 

The above set of equations is dependent on several dimensionless criteria, namely, 
the Froude number Fr = U,/(gL)i, the Reynolds number Re = U ,  Llv, the Bond 
number Bo = pgL2/cr, the magnetic Bond number Bo, = ,uoMoGL2/cr, and the 
Weber number We = put L l a .  Here C is the characteristic value of the magnetic field 
strength gradient VH, and y = g/g. We have introduced the magnetic Weber number 
We, = ,uo M: L / r  ( M ,  is the characteristic value of magnetization M ) ,  an analogue of 
the Weber number equal to the ratio of the dynamic pressure difference put to the 
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capillary pressure, u /L .  The magnetic Weber number is the ratio of the characteristic 
difference in surface pressure p o M &  due to a jump in fluid magnetization M ,  to 
capillary pressure cr/L. 

3. Evaluation of dimensionless criteria 
It is seen from the above set of equations that magnetohydrodynamic effects due 

to fluid magnetization are proportional to the magnetic Bond and Weber numbers, 
Bo, and We,, whence some general recommendations concerning physical problems 
in which the magnetic properties of fluids should be necessarily taken into account 
may be deduced. 

When studying surface effects, the magnetic properties should be considered in all 
the cases where the magnetic Bond and Weber numbers are large enough, i.e. are of 
the order of unity or larger, Bo, 2 1 or We,,, 2 1. In  particular, for a large Weber 
number it is necessary to take into account the jump in pressure due to magnetic 
forces a t  the free boundaries (2). The effect of the body force ,uoMVH in the 
gravitational field should be taken into account if this force is comparable with the 
gravity force, i.e. Bo, 2 Bo. 

The evaluation of the Bond and Weber numbers shows that for fluids the surface 
effects associated with their magnetization become important in strong magnetic 
fields (B  - 8 T, IVB( - 3 T/m) created by strong currents (I - lo7 A) (Knoepfel 
1970). Thus, for example, in a field created by a linear conductor (I = lo7 A) a t  a 
sufficient distance from the latter (a  = 1 m) a natural fluid with ‘moderate ’ magnetic 
properties (magnetic susceptibility 1x1 = lop4) and considerable surface tension 
c = lo-’ N/m corresponds to  magnetic Bond numbers of Bo, = p, xI2 / (4nZaa)  x lo4. 
In  the field H = lo’ A/m a small volume of such a fluid (with the characteristic 
dimension L = lo-’ m) corresponds to the magnetic Weber number We, x 1 for 
which the jump in pressure due to magnetic forces should be taken into account. For 
larger volumes of the fluid (with characteristic dimension L = 1 m), the Weber number 
increases to We, = 10. For fluids with a lower coefficient of surface tension (which 
takes place, for example, a t  high temperatures) u - N/m, the Bond and Weber 
magnetic numbers take the above-indicated high values in magnetic fields that are 
weaker by an order of magnitude. 

Surface magnetic effects are of great importance for fluids used in heat- and mass- 
transfer devices in strong magnetic fields. A typical cooling agent in strong magnetic 
fields is helium (at temperatures of the order of several K (Knoepfel 1970)). 
Experimental data (Kay & Laby 1966) lead to the assumption that under these 
conditions liquid helium behaves as a weak diamagnetic substance with magnetic 
susceptibility 1x1 - and surface tension c = 0.35 x lop3 N/m. In the calculations 
of the equilibrium helium surfaces in uniform magnetic fields one need only take into 
account the magnetization (i.e. We, 2 1) for strong magnetic fields (B, x 10 T) and 
large helium volumes ( L  2 1 m). I n  non-uniform magnetic fields, e.g. in the field of a 
conductor with current I, magnetization should be taken into account (i.e. Bo, 2 1 )  
over a wide range of the parameters: in the fields of currents nowadays accessible 
in technology (I = lo7 A) it should be taken into account for almost any helium 
volume ( L  ,< lo2 m) while for the fields due to ‘moderate ’ currents (I = lo6 A) this 
should be done for volumes as large as that of a helium bath ( L  5 1 m). For such 
volumes ( L  ,< 1 m) the magnetic forces are comparable with or exceed the gravitation 
forces in the fields due to ‘moderate’ currents, I = lo6 A. In  the vicinity of the 
conductor proper ( L  - 0.3 m) carrying a strong current, magnetic forces are 
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essentially stronger than gravitation ones (Bo,/Bo N lo3) and therefore the wetting 
with helium of a conductor carrying a strong electrical current is determined mainly 
by the ratio of magnetic to capillary forces. The evaluation of these quantities for 
other diamagnetic fluids with 1x1 - 10-5-10-6 (liquid hydrogen, neon, argon, water) 
gives values of the same order of magnitude. For paramagnetic fluids (with higher 
magnetic susceptibilities, e.g. for liquid oxygen with x - 3.4 x at  70 K), such 
effects are observed in weaker fields. 

In  order to illustrate the hydrodynamic behaviour of fluids in strong magnetic 
fields we shall examine several typical problems on the equilibrium position of a fluid 
in a magnetic field and its stability. 

4. Diamagnetic fluids in non-uniform fields 
Experiments (Kaye & Laby 1966) show the wide applicability of the linear 

dependence, M = x H ,  to  fields up to  B - 10 T for which the magnetic properties of 
diamagnetic fluids (DMFs) have been studied. For simplicity, we restrict ourselves to 
the linear dependence M = x H ,  since this assumption will not affect the qualitative 
conclusions. 

A DMF in a non-uniform magnetic field is subjected to  the action of a body 
magnetic force ,uo MVH directed towards a weaker field. In  the non-uniform field of 
a linear conductor with a current in a coaxial cylindrical clearance, such a force is 
directed radially outwards from the conductor. There exists a solution of the set of 
equations (1)-(3) which corresponds to a droplet of the DMF adjacent to the inner 
side of the cylindrical clearance (figure 1). The free surface of the droplet, r = t ( z ) ,  has 
an axial symmetry and therefore does not distort the magnetic field due to the 
current. This magnetic field has the form H = [O, H ,  = 1/(2n:r), 01 over the entire 
space. Using the explicit form of the surface curvature in cylindrical coordinates, we 
arrive a t  the following equation for the droplet shape: 

where the prime denotes differentiation with respect to z .  
Taking into account the symmetry of the problem, we may limit ourselves to the 

consideration of the upper quarter of the droplet and write the boundary conditions 
for fc as 

fc(0) = a, g(0) = 0, t ( z o )  = R, C(zo) = t a n y .  (5) 

The minimum distance between the conductor centre and the inner surface of the 
droplet, a ,  and its half-length zo are to be determined. The wetting angle y is taken 
to be small (y < 1). Three unknown constants (C, a ,  zo)  and two constants obtained 
by integration of (4) are determined from the four boundary conditions (5) and the 
condition of the droplet volume constancy 

V = 2n: ( R 2 - t 2 )  dz = const. r 
If the thickness of the droplet is small, i.e. 6 = (R-a ) /R  + 1, then, within the 

terms of the order of d2, (4) takes a simple dimensionless form 



Capillary hydrodynamic effects in high magnetic jields 323 

FIGURE 1. A droplet of a diamagnetic fluid in the magnetic field of a cylindrical conductor carrying 
a current. The droplet is adjacent to the inner surface of a cylindrical clearance coaxial with the 
conductor. 

where the magnetic Bond number, Bo, = ,uoMoGR2/a, is determined via the 
characteristic gradient of the magnetic field strength 

a-5 z e = -  1 
27cR2’ 

The solution of this equation, e.g. for Bo, > 1, has the form 

G = -  Rwa’ Y’z’ 

4nR3 tan y 
coth Byo - coth & 

coth /?yo - 1 
€ =  

a=--- ’ P2 0 t h  PYO /3 = (Bo,-l):. 
tan y coth /?yo - 1 

P coth PYO “ = c o t h / ? y o - - l ’  

For large values of the magnetic Bond number (large Bo, corresponds to y 4 1 ,  
8 < i ) ,  we obtain 

tan y a=----. 
Bok 

Boh V 

In the above relationships, yo = zo/R determines the half-length of the droplet and 
6 determines the value of a. The length of the droplet zo is proportional to, and its 
thickness is inversely proportional to, the square root of Bo,. With an increase in 
Bo, the droplet shrinks in the transverse direction and spreads in the longitudinal 
one. The droplet thickness increases as the wetting angle increases, the other 
conditions being the same. 

In the limit y --f 0, the droplet degenerates into a hollow cylindrical layer adjacent 
to the inner side of the cylindrical clearance. Such an equilibrium position in the field 
of a conductor (in the absence of an electrical field) can only be occupied by a 
diamagnetic fluid (figure 2 ) .  

We shall consider the stability of the above-mentioned hollow cylindrical layer of 
the DMF with respect to constricted axisymmetric perturbations of the surface in the 
form 

6 = [ - a  = e, exp [i(kz-wwt)], 

which are running waves with wavelength h = l/k, where 5 = 6-a  is the deviation 
of the perturbed surface from the unperturbed one, r = a. Viscous forces were 
neglected here. 

It is assumed that there is a potential of the velocity of the perturbed motion of 
the fluid, i.e. v = grad$. Then the continuity equation has the form V2$ = 0. 
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R 

FIQURE 2 .  A hollow cylindrical layer of the magnetic fluid adjacent to the inner surface of the 
clearance in the magnetic field of a linear conductor coaxial with the clearance. One can see 
constricted perturbations of the surface. 

Since the force po MVH is of a potential nature, the Cauchy-Lagrange integral is 
also valid in the case of a fluid: 

p+pt+~p(Vq5)2--po aq5 

A similar expression has been derived for ferromagnetic fluids (Neuringer & 
Rosensweig 1964). Since the lines of force of the magnetic field are parallel to the 
disturbed surface, the equation of the jump in pressure has no magnetic term and 
acquires the form 

P = p,+a(K,+K,). 

The kinematic conditions a t  all the boundaries of the fluid 

in the approximation of small perturbations 5 take the following form for the free 
surface : 

ar 
v r  = -, 

at 
and for the solid surface: 

Linearization of the system (9) with respect to small 5 results in the following set of 
equations : 

a[(a-, - k-,) -Born u-,] e,  - iwpI,(ka) C, - iwK,(ka) C, = 0 ,  
iwe, + /%l,(ka) C, - I%K,(ka) C, = 0 ,  

kI,(kR)C,-kK,(kR)C, = 0 ,  

where the magnetic Bond number is 

Po MI2 Born = -. 
4n2aa 
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If this set of equations has a non-zero solution, i.e. its determinant is 
a t  the dispersion equation 
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zero, we arrive 

I ,  (kR) K ,  (ha) - I ,  (ka)  K ,  (kR) 
I , (ka)K,(kR) +I , (kR)K,(ka)  ’ 

0 2  = s(Bo,+s2- 1) 

where D = (pa3u2/(r)% is the dimensionless frequency and s = ka is the dimensionless 
wavenumber. The fraction here is positive and therefore 

sgnSZ2 = sgn(Bo,+s2-1). 

For Bo, > 1, SZ is real and the hollow layer of the D M F  is stable with respect to the 
constricted perturbations of the surface. For Bo, < 1, we can always find a 
wavenumber s such that (Bo, - 1 + s2) < 0, i.e. frequencies SZ and w are imaginary 
quantities, the boundary perturbation 6 monotonically increases with time and the 
layer is unstable with respect to the constricted perturbations of the surface whose 
dimensionless wavelength A = l/s exceeds (1 -Born)-;. 

It follows from the critical value of the Bond number that the stability of the layer 
increases with an increase in the absolute value of magnetic susceptibility and the 
current, and drops with an increase of the surface tension and the radius of the free 
surface. Of interest is the fact that the layer stability depends on the radius a of the 
layer surface but is independent of the radius R of the clearance walls, the latter 
indicating that the instability under consideration is an instability of the surface. 

The above-considered instability of an infinite cylindrical layer of D M F  adjacent 
to the inner side of the cylindrical clearance in the state of weightlessness is a model 
problem of an important technological process, i.e. that of the fluid flow over the 
inner surface of the vertical cylindrical clearance in the gravitational field. In the 
absence of forces of electromagnetic origin such a cylindrical layer of the fluid is 
always unstable with respect to the above-considered constricted perturbations of 
the surface. The phenomenon of the stabilization of a cylindrical D M F  layer in the 
field of a linear conductor carrying current described above allows the creation of 
new hydrodynamic modes in strong magnetic fields using a series of DMFs. A 
cylindrical D M F  of radius a = 1 m possessing ‘moderate ’ magnetic properties 
(x = - lop5, v = lop2 N/m) in the field of a current I = lo’ A corresponds to the 
magnetic Bond number Bo, - lo4, which essentially exceeds its critical value and 
therefore the layer is stable. A current whose field retains such a layer in the stable 
state has the critical value I ,  = 105xi, i.e. is one-two orders of magnitude smaller 
than the maximum attainable currents. The attainable currents, I = lo7 A, may 
retain in the stable state layers as thick as a = 1 m for a number of DMFs (e.g. of 
hydrogen, helium, argon, water, etc.) including very weak magnetic DMFs with 

In  the limiting case of an infinitely thick hollow layer (R = co) with the condition 
x = - 10-9n. 

a t  distant boundaries pl,=R=m = p ,  the fluid has the pressure 

p = -  +p,. 
4n2r2 

If the radius a of the conductor is such that 
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(i.e. p ,  < 103/7t Pa for I = lo7 A, x = a = 0.1 m (Knoepfel 1970)), in the 
diamagnetic fluid cylindrical caverns may form around a sufficiently thin 
superconductor carrying a strong current (the above-described cylindrical layer). As 
far as we know, such a phenomenon, i.e. the drying of a conductor inside a non- 
conducting fluid, can take place only in diamagnetic fluids. 

5. Hydrodynamic effects in uniform magnetic fields 
The behaviour of DMFs in applied uniform magnetic fields is similar in many 

respects to that of paramagnetic fluids (PMFs). 
A single PMF droplet placed in a vertical uniform magnetic field in the absence of 

any other body forces acquires the shape of an ellipsoid of rotation (Berkovsky et ul. 
1985; Berkovsky & Smirnov 1984, 1985). We assume that a DMF droplet in a state 
of weightlessness also acquires an axisymmetric shape in an applied vertical uniform 
field H e  which is close to the more general shape of an ellipsoid of rotation, either 
elongated or flattened. Then the magnetic field inside the droplet, Hi, is also uniform, 
Hi = const. I n  this case the Laplace condition for the pressure difference (2) reduces 
to the form 

where subscripts u and b denote the fluid above and under the surface of the DMF 
and the prime denotes differentiation with respect to r .  The solution of the above 
eauation is 

where I,, is the modified Bessel function; integration in (10) is carried out over any 
interval of r where the square-root expression in (10) is positive. It follows from (10) 
that  the DMF droplet is elongated in the direction of the lines of force of the magnetic 
field similarly to the case of a droplet of a PMF. This effect should be well pronounced 
in experiments with droplets of true (natural) fluids which have low coefficients of 
surface tension (r (e.g. a t  high temperatures) in strong magnetic fields. Thus in the 
field H = lo7 A/m a droplet of a typical DMF (x = - c~ = N/m) which has 
the characteristic size L = 10-l m, i.e. the volume V = L3 = lop3 m3, is characterized 
by the dimensionless parameter I7 = 1.256; thus the droplet is elongated, i.e. its 
length-to-diameter ratio is e = 1.28. 

Such droplet elongation (of the order of several tens of per cent and more) is 
observed within a certain range of parameters for a series of DMFs (hydrogen, neon, 
argon, water) in fields H - lo7 A/m. 

Berkovsky & Smirnov (1984) suggested a solution for the shape of a free jet of fluid 
in a magnetic field with the field strength vector normal to the jet. It can be shown 
that the cross-section of the DMF jet elongates in the direction of the field and that 
this effect is of the same order of magnitude as that  for an elongated droplet. 

The analysis of the stability of a free DMF surface in a vertical gravitation and 
uniform magnetic fields by the method suggested by Berkovsky et al. (1985) shows 
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that, similar to  the PMF surface, the DMF surface shows a step instability in 
magnetic fields with strength H exceeding the critical value, H > H i .  Then the 
following relationship is valid : 

6. Conclusions 
The solutions obtained demonstrate magnetodynamic effects caused by the 

magnetization of fluids (helium, water, oxygen, nitrogen, etc.) which are pronounced 
in high magnetic fields (exceeding 1 T) in problems concerning the determination of 
equilibrium forms and their stability. Such effects are especially strong in non- 
uniform magnetic fields. Mathematically, this is explained by the fact that the 
dimensionless criteria proportional to those terms in (1)-(3), which are related to  the 
hydrodynamic effects of magnetization of natural fluids in non-uniform magnetic 
fields (Bo, for the above procedure for deriving dimensionless expressions), depend 
linearly on the small quantity x ,  which for natural fluids is usually less than The 
criteria for natural fluids associated with the effects in uniform fields, e.g. We,, 
depend on x2.  The behaviour of fluids with negative and positive susceptibilities show 
some similar and different features. Both types of fluids forming jets and droplets 
elongate in the direction of the lines of force of the uniform magnetic field; the flat 
horizontal free surface of these fluids in vertical gravitational and uniform magnetic 
fields show step instability. At the same time, diamagnetic fluids may also take a 
stable equilibrium shape which cannot be obtained for other fluids, e.g. that of a 
hollow cylindrical layer in the non-uniform field of a linear conductor. 

The fact that both diamagnetic and paramagnetic fluids show the same properties 
in uniform fields and different properties in non-uniform fields is mathematically 
explained by the linear and quadratic dependence of the main dimensionless 
parameters on magnetic susceptibility x. 
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